Биосфера
Книги по екологии / Общая экология / Биосфера
Страница 5

В атмосфере углерод входит в состав углекислого газа СО2, в меньшей мере – в состав метана СН4 или следового количества других газообразных соединений. В гидросфере СО2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул СО2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО3– и СО2-3. Эти ионы реагируют с катионами кальция или магния с выпадением карбонатов в осадок. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды. При подкислении (увеличении концентрации ионов Н+) происходит сдвиг влево в цепи: СО2 воздуха → СО2 воды → Н2СО3 → Са(НСО3)2 → СаСО3. При подщелачивании усиливается выпадение в осадок карбонатов кальция.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли (рис. 164). Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов – бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества. (по Б. Болину, 1972)

Рис. 164.

Круговорот углерода в биосфере (по Б. Болину, 1972)

Особенно активно происходит возврат в атмосферу СО2 из почвы, где сосредоточена деятельность многочисленных групп деструкторов и редуцентов и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда СО2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус – богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус является носителем почвенного плодородия, поскольку разрушается определенными группами микроорганизмов медленно и постепенно, обеспечивая равномерное питание растений. Гумус почв является одним из важных резервуаров углерода на суше.

В тех условиях, где деятельность деструкторов тормозится факторами внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т. п. Однако основным резервным фондом углерода на планете являются не живые организмы и не горючие ископаемые, а осадочные породы – известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоранивается в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биологическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4–5 лет, запасы в почвенном гумусе – за 300–400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая часть его (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

По учетам в сети глобального мониторинга это уже приводит к повышению концентрации СО2 в атмосфере, последствия чего для судьбы человеческого общества усиленно обсуждаются и требуют научно обоснованного прогнозирования.

Кислород.

С углеродным циклом теснейшим образом сопряжен круговорот кислорода.

Своей уникальной среди планет атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. Кислород освобождается из молекул воды и является по сути дела побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемыми фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше на равный объем по сравнению с воздухом.

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О2 в атмосфере составляет не более 5 % от общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

Страницы: 1 2 3 4 5 6 7 8 9 10

Смотрите также

Взаимодействие климата и растительности
Климат — главный фактор, определяющий характер растительности. Растения в свою очередь также в некоторой степени воздействуют на климат. Как климат, так и растительность оказывают решающее влияние ...

Роль изоферментов лактатдегидрогеназы в адаптациях млекопитающих Карелии
В экстрактах тканей сердца, почек, скелетных мышц, печени, легких, селезенки у американской норки (Mustela vison L.), песца (Aiopex iagopus), лисицы ( Vuipes vuipes L.), лесной куницы (Martes mart ...

Биогеография
Основная цель экологии состоит в том, чтобы понять те разнообразные факторы, которые влияют на распределение и обилие животных и растений (Andrewartha, Birch, 1954; Krebs, 1972; Mac-Arthur, 1972). ...

Разделы