Принципы термодинамики
Эволюционная экология / Структура сообщества / Принципы термодинамики
Страница 1

Важным аспектом экологии сообществ являются энергетические взаимоотношения между видами. Но прежде чем перейти к изучению энергетики сообществ, нам необходимо рассмотреть некоторые основы термодинамики.

Всем организмам для существования и воспроизведения требуется энергия, а единственный источник практически всей энергии на Земле — Солнце. Можно считать, что Земля «питается» лучистой энергией Солнца. Но 99% падающего солнечного излучения (а, возможно, даже и больше) не используется организмами и теряется в виде тепла и теплоты испарения. Только около 1 % улавливается растениями при фотосинтезе и запасается в виде химической энергии. Кроме того, количество поступающей солнечной энергии сильно различается в разных точках земной поверхности и зависит от времени (см. гл. 2 и 3).

Физика и химия дали нам два фундаментальных закона термодинамики, которым подчиняются все формы вещества и энергии, включая живые организмы. Первый закон, закон сохранения вещества и энергии, утверждает, что вещество и энергия не исчезают и не создаются вновь. Они могут преобразовываться, а энергия может переходить из одной формы в другую, но общая сумма эквивалентных количеств вещества и энергии должна оставаться постоянной. Свет переходит в тепло, кинетическую энергию и (или) лотенциальную энергию. В любой момент времени энергия преобразуется из одного вида в другой; часть ее выделяется в виде тепла, которое представляет собой наиболее беспорядочную форму ее существования. Единственный путь преобразования энергии со 100%-ной эффективностью — это переход ее в тепло, или горение. Сжигание навесок высущенных организмов в «калориметрических бомбах» — щироко распространенный метод определения количества энергии, запасенной в тканях (Paine, 1971). Энергию можно измерять в разнообразных единицах, например эргах или джоулях, но в экологии общим знаменателем является тепловая энергия, которая выражается в калориях.

Второй закон термодинамики утверждает, что все виды энергии, будь то световая, потенциальная, химическая, кинетическая или любая другая энергия, спонтанно стремятся перейти в менее организованную и более беспорядочную форму. Этот закон иногда называют законом «возрастания энтропии». Предположим, я подогреваю сковороду, чтобы приготовить яичницу. После завтрака сковорода остается на плите. Поначалу тепловая энергия сконцентрирована у сковороды. По сравнению с остальной частью комнаты эту энергию нельзя назвать беспорядочной. Па следующее утро сковорода остынет до температуры воздуха, а тепловая энергия рассеется по всей комнате, и ее нельзя уже больще использовать для приготовления еды. Система, состоящая из сковороды, комнаты и тепла, прищла в равновесие, стала менее упорядоченной и характеризуется возросщей энтропией. Если в ней нет постоянно действующего внещнего источника энергии, например газовой или электрической плиты, который поддерживал бы неустойчивое состояние, рассеяние энергии приведет к равновесию, характеризующемуся полным беспорядком. То же самое справедливо в отнощении всех видов энергии. Теоретически из этого закона следует, что в отдаленном будущем наща Солнечная система, а может быть, и вся Вселенная превратятся в соверщенно беспорядочный набор молекул и в тепло.

Страницы: 1 2

Смотрите также

Структура сообщества
За исключением краткого рассмотрения биомов в гл. 3, до сих пор мы касались только экологии особей и популяций. В этой главе речь пойдет об экологии сообществ. Подобно тому как популяции обладают ...

Роль изоферментов лактатдегидрогеназы в адаптациях млекопитающих Карелии
В экстрактах тканей сердца, почек, скелетных мышц, печени, легких, селезенки у американской норки (Mustela vison L.), песца (Aiopex iagopus), лисицы ( Vuipes vuipes L.), лесной куницы (Martes mart ...

Биогеография морского бентоса
в биосфере Земли можно выделить четыре основных типа сравнительно независимых друг от друга ЦС: морские, пресноводные и наземные. В свою очередь морские ЦС можно разделить на бентосные, биотоп кот ...

Разделы