Структура и динамика популяцийКниги по екологии / Экология / Структура и динамика популяцийСтраница 11
Миграция, или расселение, так же как и внезапное снижение скорости размножения, может способствовать уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, например с образованием семян. Рассматривая вопрос об оптимальных размерах популяции в данной среде, следует учитывать поддерживающую емкость или кормовую продуктивность среды. Чем выше поддерживающая емкость, тем больше максимальный размер популяции, который может существовать неопределенно долгое время в данном местообитании. Дальнейшему росту популяции будут препятствовать один или несколько лимитирующих факторов. Это зависит от доступности ресурсов для данного вида.
Таким образом, скорость роста популяции в естественных местообитаниях будет зависеть от климатических изменений, от снабжения пищей и от того, ограничено ли размножение определенным временем года и др., что должно учитываться при составлении моделей или их усовершенствовании.
Математические модели экспоненциального роста популяций и роста при ограниченных ресурсах. Рост численности популяции в геометрической прогрессии можно описать с помощью простых уравнений. Так, в популяции с исходной численностью в N особей за промежуток времени Dt появляется DN новых особей. Если число вновь появившихся особей прямо пропорционально N и Dt, то имеем уравнение DN = r ×Dt ×N. Разделив обе его части на Dt, получим
(9.4)
Величина - абсолютная скорость роста численности,
г — биотический потенциал или удельная скорость роста численности.
За малый промежуток времени изменение численности равно ее производной и уравнение (9.4) можно переписать так:
(9.5)
Решение этого уравнения — функция
. (9.6)
Здесь е — основание натуральных логарифмов (е » 2,72 .). График этой функции и есть экспонента (рис. 9.10,вверху).
Рис. 9.10. Реальная и теоретическая кривые роста численности инфузорий-туфелек (вверху) и рост численности жуков определенного вида в культуре (численность меняется по правилам логистического роста)
Пунктирная линия — теоретическая кривая (экспонента); сплошная линия — в реальной культуре рост численности замедляется и через определенное время останавливается
В модели экспоненциального роста удельную рождаемость b и удельную смертность d можно обозначить как .
При этом в замкнутой популяции
DN » b×N×Dt - d×N×Dt;
r = b – d. (9.7)
Если смертность выше рождаемости, то убывание численности тоже описывается уравнением (9.6), но с отрицательным г. Такой процесс называют экспоненциальным затуханием численности.
Модель динамики численности популяции при органиченных ресурсх предложил в 1845 г. французский математик Ферхюльст. Уравнение, которое носит его имя, выглядит так:
(9.8)
Уравнение Ферхюльста отличается от уравнения экспоненциального роста тем, что в правой его части добавляется выражение mN2. Это выражение учитывает число встреч животных, при которых они могут конкурировать за какой-либо ресурс: вероятность встречи двух особей пропорциональна квадрату численности (точнее, плотности) популяции. У многих животных рост численности популяции действительно ограничивается именно частотой встреч особей.
Смотрите также
Биогеография морского бентоса
в биосфере Земли можно выделить четыре основных типа сравнительно независимых
друг от друга ЦС: морские, пресноводные и наземные. В свою очередь морские ЦС можно
разделить на бентосные, биотоп кот ...
Морфофункциональные особенности лейкоцитов млекопитающих, разводимых в неволе
в условиях европейского севера
Представлены данные о морфофункциональных особенностях лейкоцитов крови различных
видов животных из отряда Carnivora— норок, песцов, лисиц и енотовидных собак, разводимых
в неволе в условиях Карел ...
Экологическая ниша
Понятие ниши пронизывает все сферы экологии. Если бы термину «экологическая ниша»
не придавали так много самых разных значений, то экологию можно было бы определить
как науку о нишах. Многие аспек ...